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Abstract

In the past two decades, reinforcement learning (RL) has become a popular framework for

understanding brain function. A key component of RL models, prediction error, has been associ-

ated with neural signals throughout the brain, including subcortical nuclei, primary sensory cor-

tices, and prefrontal cortex. Depending on the location in which activity is observed, the

functional interpretation of prediction error may change: Prediction errors may reflect a discrep-

ancy in the anticipated and actual value of reward, a signal indicating the salience or novelty of a

stimulus, and many other interpretations. Anterior cingulate cortex (ACC) has long been recog-

nized as a region involved in processing behavioral error, and recent computational models of the

region have expanded this interpretation to include a more general role for the region in predicting

likely events, broadly construed, and signaling deviations between expected and observed events.

Ongoing modeling work investigating the interaction between ACC and additional regions

involved in cognitive control suggests an even broader role for cingulate in computing a hierarchi-

cally structured surprise signal critical for learning models of the environment. The result is a pre-

dictive coding model of the frontal lobes, suggesting that predictive coding may be a unifying

computational principle across the neocortex.
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1. Introduction

Although the quintessential example of a surprising event may be described as a

“black swan” event, the philosophy of surprise actually began in earnest with sheep. The

Dutch philosopher Baruch Spinoza (1632–1677) was the first modern philosopher to

explore the nature and meaning of surprise, after Descartes and Aristotle who treated it

only in passing. Spinoza’s Short Treatise on God, Man, and His Well-Being (De Spinoza,

1910) devotes a whole section to surprise, from which a number of points remain relevant

for the present. First, Spinoza considers what would surprise a person: “Since from a few

particulars he draws a conclusion which is general, he stands surprised whenever he sees

anything that goes against his conclusion; like one who, having never seen any sheep

except with short tails, is surprised at the sheep from Morocco which have long ones.”

Thus, we have the first recognition that surprise can result from the occurrence of per-

ceived low or zero probability events. Second, Spinoza recognized that surprise should

lead to learning and adaptation, which in turn should minimize future surprise, as he sta-

ted (or perhaps overstated) succinctly: “Surprise is never felt by him who draws true

inferences.” Third, surprise is not exclusively good or bad: “. . . it [surprise] arises either

from ignorance or prejudice, is an imperfection in the man who is subject to this pertur-

bance. I say an imperfection, because, through itself, surprise does not lead to any evil.”

In Spinoza’s view, surprise is not necessarily valenced, but it should lead to “inferences,”

which adjust expectations and thereby minimize future surprise. These three points aptly

summarize the state of affairs of the neuroscience of surprise, as we discuss in the

remainder of the paper.

1.1. Rescorla–Wagner model

In the present day, we have moved beyond philosophical discussions of sheep to prob-

ability theory and computational neural models to describe surprise, which may be

described in a more focused way as prediction error. Errors generally entail prediction

errors that are aversive. Perhaps the best known use of error in associative learning is the

Rescorla–Wagner (RW) model of classical conditioning. Briefly, the RW model is for-

malized as follows (Miller, Barnet, & Grahame, 1995; Rescorla & Wagner, 1972):

DVnþ1
X ¼ aXb1ðk1 � Vn

totalÞ ð1Þ

Vnþ1
X ¼ DVn

X þ DVnþ1
X ð2Þ

The intuition behind the RW model is admirable in its simplicity: The association V
between a CS and US changes by (DV), increasing if the level of the US is greater than

predicted, and decreasing if the US level is less than predicted. In that sense, DV may be

thought of as an error term, that is, the difference between the maximum possible

strength k1 and the current total strength Vn
total. The association V changes at a rate
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defined by the product of a and b. The RW model was among the first to argue for a bio-

logical basis of learning based on surprise, building on earlier theories such as the

Widrow–Hoff delta rule (Widrow & Hoff, 1960).

1.2. The Temporal Difference model (TD)

Beginning in the 1980s, a series of papers investigating models of associative learning

extended the RW model from a trial-level into real-time, ultimately producing Temporal

Difference (TD) learning (Barto, Sutton, & Anderson, 1983). TD learning (and its precur-

sor models) integrated previous ideas, such as eligibility traces (Klopf, 1972), regarding

the influence of the temporal characteristic of CSs and USs on learning. Perhaps the key

innovation of TD learning was the reformulation of the RW error computation (Eq. 2).

While reward in the trial-level RW model is effectively a single time point event, in real-

time models of learning the duration of stimuli matters. The challenge is not only to pre-

dict the total level of reward but to account for how associations between a CS and US

change based on the duration of the US. In order to do so, Sutton and Barto reimagined

associations V as reflecting a discounted sum of all future levels of a US:

VðtÞ ¼ E½rðtÞ þ cVðt þ 1Þ� ð3Þ

Here E is the expected value, r is reward, and c is a discount factor between 0 and 1,

in which smaller values of c reflect a greater discounting, that is, more weighting toward

recent reward experience. In order to learn this quantity, TD learning extends the RW

learning rule to include not only the level of a US at a given time, but also a term reflect-

ing the future predicted rewards.

dðtÞ ¼ rðtÞ þ cV̂ðt þ 1Þ � V̂t ð4Þ

Here d is then multiplied by a learning rate and then added to update the value term V
in a manner analogous to Eq. (2) above. The RW model is a special case of TD learning

model, as can be seen when the discount value c is set to 0 in Eq. (4), and thus accounts

for all effects captured by the RW model. TD learning additionally accounts for effects

not captured by the RW, or trial-level models in general, related to the temporal relation-

ships of CSs and USs, including second-order conditioning and the development of nega-

tive associations for CSs occurring near the end of a US presentation (Sutton & Barto,

1990).

While the TD learning is of interest from a psychological standpoint in terms of pro-

viding a framework for investigating temporal effects on associative learning, it became a

foundational model of modern neuroscience during the 1990s (“The Decade of the

Brain”) when the relationship between the TD prediction error term and the activity of

dopamine (DA) neurons in the primate midbrain was observed. In a series of influential

papers, Schultz et al. documented this relationship and potential functional interpretations
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of the DA signal in driving learning about reinforcement (Schultz, 1998; Waelti, Dickin-

son, & Schultz, 2001). The activity profile of DA neurons signals reinforcement surprise:

In the substantia nigra pars compacta and ventral tegmental area, activity is briefly greater

at the moment when information indicates that a reward will be better than expected, and

activity is briefly reduced at the moment when new information indicates that a reward

will be worse than expected (Schultz, Dayan, & Montague, 1997).

The influence of the TD model, especially the TD prediction error, on neuroscience

cannot be overstated. Besides delivering an elegant account of a single neuromodulatory

system, the interpretation of DA neurons as providing a global signal of reward has dri-

ven a vast research enterprise focused on the role of value in the brain, informing investi-

gation in a diverse range of subfields, including cognitive control, affective and clinical

neuroscience, judgment and decision-making, perception and action, and many others.

Likewise, TD learning has driven subsequent theoretical work in attempting to construct

a “Grand Unification Theory” of other major neuromodulatory systems using the frame-

work of surprise and error, linking their function to, for example, prediction and predic-

tion errors of aversive events by serotonin (Daw, Kakade, & Dayan, 2002), or uncertainty

about the environment, that is, both expected (acetylcholine) and unexpected (nora-

drenaline) (Yu & Dayan, 2005), all aspects of the underlying concept of surprise. We will

see below that the core computation of surprise in the TD model may generalize to simu-

late effects in the ACC as well, but first we discuss theories of predictive coding as a

context for models of ACC and related frontal cortex areas.

1.3. Predictive coding

While the functions of major neuromodulatory systems have been interpreted under the

framework of surprise, prediction error computation is also frequently deployed to explain

the role of a diverse array of cortical regions, from primary sensory cortices (Rao & Bal-

lard, 1999) to language (Osterhout & Holcomb, 1992) to prefrontal regions involved in

sophisticated cognitive processes (Gehring, Goss, Coles, Meyer, & Donchin, 1993;

Gemba, Sasaki, & Brooks, 1986; Jessup, Busemeyer, & Brown, 2010). The apparent

ubiquity of error signals throughout the brain has in turn led to additional theoretical

work to develop yet another Grand Unification Theory, this time of neocortex. Proposed

frameworks, including Predictive Coding (Rao & Ballard, 1999), Free Energy (Friston,

2010), and Hierarchical Bayesian Inference (Lee & Mumford, 2003), while differing in

their details, use prediction and prediction error as the fundamental currency of communi-

cation among neurons and brain regions. Generally, these related approaches propose that

the brain is organized hierarchically, with each hierarchical level attempting to predict

the likely causes of input received by an inferior hierarchical level. Predictions that are

not sufficient to explain input are used to compute error signals that are passed to supe-

rior hierarchical levels. This process of top-down prediction and bottom-up error

signaling may be repeated an arbitrary number of times, producing a system composed of

relatively simple learning mechanisms that nevertheless can engage in sophisticated

processing of input.
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Predictive coding accounts have primarily concerned themselves with the processing of

sensory input, and they have been deployed to explain early (pre-cortical) visual process-

ing, where the lateral and temporal antagonism of receptive fields in the retina and lateral

geniculate nucleus (Huang & Rao, 2011), as well as biphasic responses of neurons in

LGN (Jehee & Ballard, 2009), arise from predictive coding formulations. Predictive cod-

ing similarly provides an account of how receptive fields in early visual cortex (V1) may

be learned (Jehee, Rothkopf, Beck, & Ballard, 2006), an explanation for extra-classical

receptive fields throughout visual cortex (Rao & Ballard, 1999), binocular rivalry as the

need to account for error due to multiple possible percepts (Hohwy, Roepstorff, & Fris-

ton, 2008), the processing of complex stimuli in high-level visual areas (Egner, Monti, &

Summerfield, 2010), and the response of regions of frontal cortex in coding predictive

information regarding prospective percepts (Summerfield et al., 2006). Although less well

elaborated, predictive coding has likewise been offered as an explanatory framework for

processing in auditory cortex (Huang & Rao, 2011) as well as the structure of primary

motor cortex (Shipp, Adams, & Friston, 2013). More recent work has argued that predic-

tive coding could be structured into hierarchical representations (Clark, 2013), a point to

which we return below.

1.4. Frontal cortex and predictive coding

The success of predictive coding and related approaches in accounting for neural data is

compelling, as well as suggestive of a general organizing principle of the brain. However,

it is unclear how the motif of top-down prediction and bottom-up error signals might be

extended to account for the function of frontal regions involved in higher level cognition.

These approaches have been most successfully applied to explain results in sensory and

motor cortices, regions of the brain where neural activity is most closely related to concrete

and observable phenomena: perceptual input on the one end, and overt action on the other.

Speculation that hierarchical predictive coding schemes might also be deployed to explain

more abstract, cognitive behaviors rests largely on the premise of a repeating motif of pre-

diction and error that can be extended indefinitely. The implicit assumption, then, is that by

layering prediction error loops “enough” times, one will arrive at a system capable of com-

plex cognition.

While it is unclear why or how a predictive coding framework with a sufficient num-

ber of hierarchical levels should eventually result in a cognitive system, there is substan-

tial reason to believe that the frontal lobes—the region of the brain generally regarded as

critical for cognition—may implement some version of predictive coding. Prefrontal cor-

tex is generally thought to be organized along a rostrocaudal abstraction gradient, with

activity in caudal regions associated with concrete stimulus-response associations,

whereas rostral regions are more typically implicated in maintaining abstract information

related to goals, rules, and task sets (Badre & D’Esposito, 2009; Koechlin, Ody, &

Kouneiher, 2003). While the observed hierarchical organization of PFC, especially its lat-

eral aspects, hints at the possibility that a predictive coding scheme may be utilized by
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the frontal lobes, a critical component of such a framework is the calculation of predic-

tion errors used to drive learning throughout the hierarchy.

1.5. Anterior cingulate cortex and the PRO model

A wealth of findings have established anterior cingulate cortex (ACC) and surrounding

medial prefrontal cortex (mPFC) as a region critically involved in prediction and process-

ing error. Findings from neurophysiological studies in monkeys observed activity in sin-

gle neurons in ACC associated with the anticipation of an imminent reward (Shidara &

Richmond, 2002), as well as the occurrence of behavioral error or when a reward was

surprisingly withheld (Gemba et al., 1986; Ito, Stuphorn, Brown, & Schall, 2003). Evi-

dence from EEG and fMRI studies in humans has likewise implicated the region in sig-

naling behavioral error (Gehring et al., 1993; Hohnsbein, Falkenstein, & Hoorman, 1989;

Kiehl, Liddle, & Hopfinger, 2000), resolving response conflict (MacDonald, Cohen, Sten-

ger, & Carter, 2000), predicting the likelihood of error and indicating the unexpectedness

of an error (Brown & Braver, 2005), and several others. While the array of disparate find-

ings regarding cingulate seemed to indicate a diversity of functions and operating modes

subserved by ACC, the emphasis on interpreting cingulate activity in terms of, on one

hand, signaling aversive events such as pain (Lieberman & Eisenberger, 2015; Wager

et al., 2016), error, and behavioral conflict or, on the other hand, appetitive events such

as reward prediction and reward detection (Ito et al., 2003), suggested that the primary

function of ACC might not depend on the valence of events. In simpler terms, ACC

doesn’t care about “good” or “bad” events, but only if the event was expected, and

whether or not the event occurred. This intuition, that ACC attempts to both predict and

evaluate the surprisingness of all outcomes, positive and negative, led to the development

of the Predicted Response-Outcome (PRO) model of ACC (Alexander & Brown, 2010,

2011).

1.6. The PRO model

The PRO model (Fig. 1) as originally published casts the ACC as learning to predict

the likely outcomes of actions, regardless of their affective import, and signaling in

particular the unexpected non-occurrences of predicted events. Initially, the model was

aimed at accounting for results from the cognitive control literature, including effects of

conflict, error likelihood, conflict, and the surprising occurrence of error. To account

for these results, the model exploited formulations from RL theory, especially the TD

Learning model described above. As in TD learning, the PRO model computes a

temporal prediction error

di;t ¼ ri;t þ cVi;tþ1 � Vi;t ð5Þ

in order to train predictions. The PRO model extends the TD model in two key ways.

First, rather than predicting a scalar quantity such as value—which, in RL represents the
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combined, discounted sum of future rewards obtainable from a current state—the PRO

model learns a vector-valued prediction of future states that may be associated with

actions given a current state. In effect, it predicts the whole distribution of likely out-

comes as a vector of predictions, rather than collapsing to the scalar mean as in RL. Sec-

ond, whereas positive and negative prediction errors in RL are associated with appetitive

and aversive events, respectively, the PRO model jettisons valence and instead signals

events that occurred unexpectedly (“positive surprise”) and events that were predicted but

failed to occur (“negative surprise”). These provide a signal akin to an unsigned predic-

tion error in RL. Single-unit studies in monkey suggest that neurons in ACC signal both

kinds of surprise—an unexpected reward or an unexpected punishment may cause sepa-

rate neurons in ACC to fire phasically (Ito et al., 2003)—both examples of positive sur-

prise. Negative surprise, on the other hand, requires neurons that exhibit increased

activity when an event fails to occur as expected, as has been found previously in the

medial PFC (Alexander & Brown, 2011; Amador, Schlag-Rey, & Schlag, 2000). In the

absence of overt sensory cues, neurons showing increased activity following surprising

omissions must have access to information that allows them to predict both the nature

and timing of the event, that is, expected to happen—exactly the kind of information

trained in TD learning. In ACC, single-unit activity has been observed in which firing

rates “ramp up” in the periods prior to the occurrence of a trained (affectively positive or

negative) outcome (Shidara & Richmond, 2002). According to the PRO model (Alexan-

der & Brown, 2011), if the outcome occurs as expected, the firing of that unit is sup-

pressed, while if the outcome is withheld, the unit’s activity peaks slightly after the time

when the outcome was expected and gradually decays. Positive and negative surprise tend

to be positively correlated in most experimental paradigms—the surprising absence of

“correct” feedback (negative surprise), for example, is often accompanied by the surpris-

ing occurrence of “error” feedback” (positive surprise). However, units related to negative

surprise signals additionally have access to temporal information, allowing them to cap-

ture a broader range of effects related to anticipation and prediction in ACC.

The PRO model thus offers a compelling reconciliation of findings linking ACC pri-

marily with reward processing (Hayden & Platt, 2010; Ito et al., 2003) with those finding

Fig. 1. The PRO model. In the PRO model, predictions regarding likely future events are associated with rel-

evant stimuli. Deviations from predictions (“surprise”) drives learning as in several models of associative

learning.
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effects primarily related to error and conflict (Botvinick, Braver, Carter, Barch, & Cohen,

1998; Botvinick, Nystrom, Fissel, Carter, & Cohen, 1999), despite concerns that such a

reconciliation may not have been possible (Cole, Yeung, Freiwald, & Botvinick, 2009).

This reconciliation is achieved by assigning the calculation of surprise as the principal

function of ACC. Rather than assuming that ACC is composed of a number of functional

modules devoted to processing conflict, signaling error, signaling reward, registering pain,

etc., to explain its involvement across a range of neuroimaging studies, the PRO model

suggests that ACC activity is routinely observed by virtue of a single function, surprise

calculation, that is, applied generally across modalities and paradigms (Alexander &

Brown, 2014).

1.7. Unifying prefrontal cortex

The proposed role of ACC in signaling valence-neutral prediction error as its main

function suggests one possible avenue by which predictive coding might be extended into

PFC. Given the wealth of effects accounted for by the PRO model, any effort to interpret

PFC function under the predictive coding framework is likely to map bottom-up error sig-

naling to ACC/mPFC. However, to satisfy the requirements of predictive coding formula-

tions, two conditions must be met. First, under predictive coding, multiple errors signals

are generated corresponding to hierarchical levels—errors at lower levels are more clo-

sely related to concrete events, while higher levels signal abstract errors. Second, predic-

tions at lower levels are contextualized by top-down predictions that explain away input

that leads to prediction errors.

With regard to the first condition, recent evidence suggests that distinct regions within

ACC and mPFC may support hierarchical error processing. Evidence from studies on

humans and monkeys demonstrates that ACC follows a dual topography (Amiez & Pet-

rides, 2012; Procyk et al., 2014) in which, within a particular ACC region, the activity of

distinct subregions corresponds to an anatomical map of the body during feedback pro-

cessing, and this anatomical map is repeated at distinct loci along the rostrocaudal axis,

suggestive of a repeated, hierarchical organization. More direct evidence from neuroimag-

ing studies in which the degree of abstraction of an error was manipulated demonstrates

spatially distinct error activity within ACC, with more abstract errors processed more ros-

trally than concrete errors (Fig. 2) (Kim, Johnson, Cilles, & Gold, 2011; Zarr & Brown,

2016). These findings suggest that the essential function ACC proposed by the PRO

model of surprise calculation may apply at multiple regions within cingulate.

With regard to the second condition, ACC may provide surprise signals to a number of

other brain regions, which may in turn provide information critical to explaining the

causes of prediction error. In this respect, dlPFC is a likely modeling target. DLPFC is

generally recognized as a region concerned with representing rules and task sets beyond

simple associations, and it is heavily implicated in maintaining items in working memory

over protracted periods of time. Furthermore, dlPFC is known to be densely and recipro-

cally connected with ACC (Barbas & Pandya, 1989), suggesting that the interaction

between these two regions is vital for supporting behavior and cognition. Indeed,
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coactivation of ACC and dlPFC is routinely observed in neuroimaging studies, and the

two regions are core components of the cognitive control network (Dosenbach et al.,

2007). The DLPFC shows sustained activity ostensibly related to working memory (WM)

(Niki & Watanabe, 1979), perhaps for strategies more than for stimuli (Nee & Brown,

2012; Riggall & Postle, 2012). Neuroimaging studies of subjects performing psychologi-

cal tasks known to involve significant WM demands reliably elicit activity over broad

regions of lPFC (Nee et al., 2013). Rather than acting as a simple buffer that retains

information that may be needed at a later time, however, dlPFC activity is additionally

sensitive to task demands. Distinct regions within dlPFC are differentially activated

depending on how “abstract” an item that must be stored in WM is, with rostral regions

showing increased activation for high-level context variables, and caudal regions respond-

ing to more concrete stimuli (Badre & D’Esposito, 2007; Koechlin et al., 2003; Nee &

Brown, 2012; Nee, Jahn, & Brown, 2014).

1.8. The HER model

The above observations suggest a possible synthesis consistent with the predictive cod-

ing framework: The error representation hypothesis states that multi-dimensional error

(A)

(B)

Fig. 2. Hierarchies of prediction error in the mPFC. (A) In a hierarchical task, higher level task errors led to

more anterior medial PFC activation, but lower level task errors led to more posterior medial PFC activation.

(B) The mPFC areas showing hierarchical error. Adapted with permission from Zarr & Brown (2016).
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signals generated by ACC are used to train prediction error representations in dlPFC (i.e.,

representations that predict the prediction errors), which are then trained to be activated

by task-relevant stimuli. Subsequent presentations of a stimulus elicit activity representing

the expected prediction error generated by ACC, and this activity is used to modulate

predictions in order to support adaptive behavior. The error representation hypothesis was

formalized in a recent computational model of mPFC and dlPFC, the Hierarchical Error
Representation (HER) model (Alexander & Brown, 2015), which elaborates the predic-

tion and error representations functions proposed by the error representation hypothesis.

1.9. Basic HER model principles

The HER model (Fig. 3) is an extension of the PRO model of ACC/mPFC, using the

architecture of the PRO model as a computational motif that is repeated to form hierar-

chical levels. Indeed, at the core level, the HER model and the PRO model are identical

in their function and account for the same effects described above, using the same princi-

ples of prediction of likely events and discrepancies between predictions and observa-

tions. Each additional hierarchical level engages in exactly the same processes of

prediction and prediction error computation. However, while the predictions and predic-

tion errors at the base level (and in the PRO model) are computed based on observed sen-

sory events, additional hierarchical levels use the error signal generated by the

immediately lower level as a kind of proxy outcome—rather than learning to predict

Fig. 3. The HER model. The HER model uses the prediction/error function of the PRO model (cf. Fig. 1) as

a computational motif, that is, hierarchically iterated. At lower hierarchical layers, predictions and errors

related to concrete event-event associations. Errors generated at the lower layers are used as outcome signals

for higher layers, which learn predictions regarding the expected errors reported by lower layers. These error

predictions are associated with task-relevant stimuli maintained in working memory. Subsequently, reactiva-

tion of these error predictions can be used to modulate predictive activity at lower layers in order to refine

predictions regarding likely outcomes.
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events, hierarchical levels in the HER model learn to predict errors resulting from the

predictions of lower levels—essentially predicting the prediction errors. This motif can be

repeated an arbitrary number of times, with increasingly abstract error signals passed

upward through the hierarchy.

The error predictions elicited at each level during a task are passed to the next lowest
hierarchical level in order to modulate the predictions of the lower level. Because the

model learns the likely errors that are reported by a lower hierarchical level, top-down

modulation of predictions by prediction error representations improves the model’s esti-

mate of likely events when a particular prediction error can be reliably predicted by a

stimulus. This stands to reason insofar as a system that can predict its own failures can

also modify its behavior to avoid those failures.

The HER model’s treatment of prediction errors can thus be seen as building on a

number of earlier models that incorporate surprise (Table 1). Among the earliest biologi-

cal models was the RW model, but the surprise signals in that model were somewhat

crude as they did not correspond to the prior probability of the actual outcome. The TD

model calculated surprise on the difference between the magnitude of the actual versus

predicted reward, and probability is included only implicitly in that the predictions reflect

the expected value of reward, which includes probability. The PRO model (and, by exten-

sion, the HER model) incorporates surprise in several ways, both as a modified TD error

and a prediction error similar to a delta rule (Widrow & Hoff, 1960). This variety of sur-

prise signals in turn provides a rich basis for effects that can be driven by surprise,

including updated predictions, modulation of learning rates, the initiation of foraging, and

other reactive control events (Table 1).

While a detailed discussion of the mechanisms by which the HER model operates is

beyond the scope of this paper, the principal mechanisms discussed above—bottom-up

Table 1

Model surprise signals

Surprise Signal Effect of Surprise References

Rescorla–Wagner

DVnþ1
X ¼ aXb1ðk1 � Vn

totalÞ
Update CS-US association strength (Miller et al., 1995; Rescorla

& Wagner, 1972)

Temporal Difference

dðtÞ ¼ rðtÞ þ kV̂ðt þ 1Þ � V̂ðtÞ
Update prediction of scalar reward

value

(Barto et al., 1983)

PRO model negative (i.e., omission

of expected event) surprise

xN
t ¼ P

i

bVi;t � Oi;tcþ
Modulate learning rate for proactive

control action-outcome associations

(Could also drive reactive control,

foraging, or strategy switch events)

(Alexander & Brown,

2011, 2014)

PRO model vector Temporal

Difference

di;t ¼ ri;t þ cVi;tþ1 � Vi;t

Update vector of prediction of likely

events

(Alexander & Brown,

2011, 2014)

HER model prediction error

e ¼ a o� pð Þ
Update stimulus-outcome predictions

Update working memory gating

probability

Serve as event to be predicted by

higher levels of the HER model

(Alexander & Brown, 2015)

(Widrow & Hoff, 1960)
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error signaling, top-down prediction modulation—allow the model not only to perform a

wide range of tasks reported in the literature but to learn these tasks autonomously and in

a manner consistent with human behavior during learning, even performing comparably

well or better than current machine learning methods in some cases. Moreover, the HER

model can provide a number of testable predictions regarding empirical effects in the

frontal lobe (Alexander & Brown, 2015). The HER model explains activity in dlPFC as

the maintenance, update, and modulation of prediction error representations, and it cap-

tures effects observed in dlPFC including differences in activity related to the information

content of contextual cues, signals related to tonic and transient activity during WM

maintenance and updating, effects of temporal and relational abstraction, mismatch

enhancement and suppression in single neurons during a WM task, the influence of dlPFC

lesions on the ERN, and many more (Gehring & Knight, 2000; Koechlin et al., 2003;

Miller, Erickson, & Desimone, 1996; Nee et al., 2014; Reynolds, O’Reilly, Cohen, &

Braver, 2012).

The HER model provides a novel perspective on existing subregional parcellations of

the medial PFC. First, the finding of a rostro-caudal hierarchy of prediction errors (Fig. 2)

(Zarr & Brown, 2016) fits with the HER model predictions as well as with a broader set

of findings that the medial PFC has a number of functional subregions. In particular, the

finding that more abstract task errors lead to more rostral activation than more concrete

response errors (Desmet, Fias, Hartstra, & Brass, 2011) accords well with the HER model

predictions and our fMRI findings (Zarr & Brown, 2016). Other studies have found that

the same regions involved in prediction error are also involved in anti-tasks such as a

countermanding task (Nachev, Rees, Parton, Kennard, & Husain, 2005), with a rostro-

caudal distinction such that more posterior regions are more active when an action must

be freely chosen as an act of volition rather than simply generated as instructed by the

experimenter. Both effects of anti-task responding and free choice may be accounted for

as prediction error effects, as follows. For anti-tasks, it has been found that in oculomotor

tasks, the dorsal medial PFC in macaque monkeys does not respond in time to play a

causal role in driving movement (Stuphorn, Brown, & Schall, 2010). This suggests that

the dorsal medial PFC responds to the surprise of the anti-task cue but may not drive

anti-task performance. Likewise, we have found that when a response must be freely cho-

sen as an act of volition, the act of choosing may entail not only the choice-related acti-

vation but also internal predictions about which choice will be made, which leads to

greater medial PFC activation, especially more posteriorly (Jahn, Nee, Alexander, &

Brown, 2014). This is consistent with earlier findings (Nachev et al., 2005).

Surprise signals in the medial PFC may occur particularly more dorsally. Beyond the

rostro-caudal distinctions, here also appears to be a dorsal-ventral distinction in the med-

ial PFC in which dorsal regions (straddling the pre-SMA and dorsal ACC, Brodmann’s

area 32) represent prediction error, while the more ventral regions (BA 24/32) represent

pain and control signals (Jahn, Nee, Alexander, & Brown, 2016). The dorsal regions show

apparent task difficulty effects (Shenhav, Straccia, Cohen, & Botvinick, 2014) and have

been implicated in licensing effortful behavior (Holroyd & Yeung, 2012; Shenhav, Botvi-

nick, & Cohen, 2013; Verguts, Vassena, & Silvetti, 2015), but these may actually reflect
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prediction error signals rather than difficulty or effort per se, consistent with the PRO and

HER models (Brown & Alexander, 2017; Vassena, Deraeve, & Alexander, 2017). These

prediction error (i.e., surprise) signals can effectively slow responding (Forstmann, van

den Wildenberg, & Ridderinkhof, 2008; Wessel & Aron, 2017). The more ventral regions

may be involved in more proactive control (Braver, Gray, & Burgess, 2007) and in driv-

ing foraging behavior as well (Kolling, Behrens, Mars, & Rushworth, 2012; Kolling, Beh-

rens, Wittmann, & Rushworth, 2016). This dorsal/ventral distinction may account for

regional differences in conflict versus error signals, with error, that is, prediction error

found more dorsally and conflict signals found more ventrally (Desmet et al., 2011).

2. Conclusion

More generally, the HER model suggests that prediction error, long a critical compo-

nent of theories regarding behavior and neural function, is not merely a mechanism that

is useful for driving learning about the manner in which the world works. While count-

less theories and computational models take error calculation and minimization as key

components of a learning system, prediction error itself tends to be only a means to an

end, a cost function to be minimized in order to learn “rules” or “task sets.” Instead of

taking the representation of such quantities as given, that there exist specific units whose

activity not only represents but also instantiates a particular rule governing behavior to

avoid error, the HER model proposes that rules themselves are error representations.

From this perspective, then, error and surprise become the fundamental neural currency

that is elaborated through multiple stages from early sensory processing to high-level cog-

nitive behaviors. The HER model further supplies an existence proof for theories that pro-

pose a unifying framework for understanding the organization of neocortex such as

predictive coding. Sophisticated behavior in the model derives from a hierarchically iter-

ated motif of prediction and prediction error computations that engages in passing error

information up the hierarchy, and prediction information (in the form of expected predic-

tion error) downward. The HER model thus fills a critical void in our understanding the

steps by which the brain processes information from the earliest sensory areas in order to

drive goal-directed behavior.
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